Computational scientist with a PhD from MIT, specializing in graph theory, signal processing, and large-scale biological data. My research develops mathematically grounded representations of tissues, with a focus on single-cell spatial transcriptomics.

Currently seeking to apply this expertise to problems at the interface of machine learning and computational biology.

EDUCATION

MIT

PHD IN COMPUTATIONAL BIOLOGY Advisor: Xiao Wang 2020 - 2025

CORNELL UNIVERSITY

BS IN NEUROSCIENCE 2014 - 2018

COURSEWORK

COMPUTATION

Machine Learning Real Analysis Linear Algebra Multivariable Calculus Probability and Statistics Data Science Data Structures

BIOLOGY

Computational Biology Systems Biology Molecular Biology Neurobiology Biochemistry

SKILLS

THEORY

Unsupervised learning Signal processing Spectral graph theory Experimental design

COMPUTATION

Python (numpy, pandas, scipy)
Machine learning (PyTorch, scikit-learn)
Single-cell (scanpy, squidpy)
Packaging (flit, .toml)
HPC (UGE, SLURM)

EXPERIENCE

BROAD INSTITUTE/MIT | GRADUATE RESEARCHER

Xiao Wang Lab

May 2021 - Present

- Derived a unified theoretical framework for representing multicellular regions and intercellular interactions in tissues
- Leveraged this framework for unsupervised anatomical annotation of a large-scale spatial atlas of the entire mouse brain

GENENTECH | Summer Intern

Aviv Regev Lab

June 2024 - September 2024

- Cell-cell interaction identification using graph signal processing
- Accelerated feature identification from a months long process to an hours long process

MIT | RESEARCH ASSISTANT

Steven Flavell Lab

May 2018 - May 2020

• Optogenetics, image processing, and quantitative modeling to characterize neuronal activity in *C. elegans*.

CORNELL UNIVERSITY | Undergraduate Researcher

Jesse Goldberg Lab

May 2015 - May 2018

• Electrophysiology and fluorescent imaging to map neural circuitry in zebra finches and mice.

PUBLICATIONS

- [1] K. Maher and X. Wang. Harmonic representations of regions and interactions in spatial transcriptomics. *bioRxiv*, 2024.
- [2] K. Maher, M. Wu, Y. Zhou, J. Huang, Q. Zhang, and X. Wang. Mitigating autocorrelation during spatially resolved transcriptomics data analysis. *bioRxiv*, 2023.
- [3] H. Shi, Y. He, Y. Zhou, J. Huang, K. Maher, B. Wang, Z. Tang, S. Luo, P. Tan, M. Wu, Z. Lin, J. Ren, Y. Thapa, X. Tang, K. Y. Chan, B. E. Deverman, H. Shen, A. Liu, J. Liu, and X. Wang. Spatial atlas of the mouse central nervous system at molecular resolution. *Nature*, 622(7983):552–561, 2023.